
Online Technical Appendix for “Browse or Experience”

Specifics of Consumer Learning:

1. Learning about Attributes:

In the interpretation of consumer learning while owning or not owning the product, we

can consider that consumers are leaning about attributes of equal importance in each instant

in time, with the overall utility being the sum of the deviation to the mean of each attribute’s

contribution. See Branco, Sun, and Villas-Boas (2012) as an example. When not owning

the product the expected flow utility if the consumer were to buy the product is the sum of

the deviation to the mean of each of the known attribute’s contribution. When owning the

product the experienced flow utility is also assumed to be the sum of the deviation to the

mean of each of the known attribute’s contribution. This is consistent with the idea that

when experiencing a product, the consumer does not learn perfectly the flow utility that can

be obtained with that product.1 If the consumer learns more attributes per unit of time

when owning than when not owning the product, we have s2 > σ2.

Consider T as the mass of attributes. The main text presents the case of T →∞.

Alternatively, we could have T distributed exponentially with parameter ψ, with the

consumers not knowing T. In that case, if the consumer does not own the product and

information on all the number of attributes has been obtained, the consumer gets a present

value of utilities WT (x) = max[0, x−λP
r

]. If the consumer owns the product all information

on all attributes have been obtained, the consumer gets a present value of utilities of

VT (x) =
max[0, x] + λWT (x)

r + λ
. (1)

When the consumer owns the product and x > x and the consumer has not yet checked

all attributes, we have that (??) is replaced with

V (x) = x dt+ e−r dt(1− ψ dt) [λ dt{E[V (x+ dx)]− P}+ (1− λ dt)E[V (x+ dx)]]

+e−r dtψ dt [λ dtWT (x) + (1− λ dt)VT (x)] . (2)

When the consumer owns the product and x ∈ (0, x), we have that (3) and (4) in the

1Alternatively, we could consider that the experienced utility is only fully realized after the consumer
leaves the market permanently.
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paper are replaced with

Ṽ (x) = max[0, x dt] + e−r dt(1− ψ dt)[λ dtW (x) + (1− λ dt)EṼ (x+ dx)]

+e−r dtψ dt[λ dtWT (x) + (1− λ dt)VT (x)]. (3)

We can then conduct the analysis as in the main text and obtain the (stationary) threshold

x, which is now a function of ψ as well. The case presented in the main text is the case in

which ψ → 0.

2. Signals of Product Value:

Consider an alternative model, where the true value of the product, x̂, evolves over time,

as

dx̂t = σ̃dWt (4)

where Wt is a Wiener process. The decision maker observes a noisy signal Sxt at time t,

which follows

Sxt = x̂t + s̃Vt (5)

or

dSxt = dx̂t + s̃dVt (6)

where Vt is a Wiener process. That is, the signal is only on the change of x̂.

For simplicity, assume that x̂0 is known. Then we have x̂t ∼ N (x̂0, σ̃
2t), and noise

Sxt − x̂t ∼ N (0, s̃2t). The posterior mean xt is

xt =
x̂0
σ̃2t

+ Nt

s̃2t
1
σ̃2t

+ 1
s̃2t

(7)

=
s̃2

σ̃2 + s̃2
x̂0 +

σ̃2

s̃2 + σ̃2
Nt (8)

Because Sxt ∼ N (x̂t, s̃
2t) and x̂t ∼ N (x̂0, σ̃

2t), we have Xx
t ∼ N (x̂0, (σ̃

2 + s̃2)t). Thus

E[(xt − x̂0)2] =
σ̃4

σ̃2 + s̃2
t (9)

so xt evolves with a constant variance that is decreasing in s̃2. With infinite noise, xt does

not update, and with no noise, xt updates with variance σ̃2, which is intuitive.

If s̃2n is variance of the noise when not owning the product, and s̃o is the variance of
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the noise when owning the product, we can then obtain the representation as in the main

text with σ2 = σ̃4

σ̃2+s̃2n
and s2 = σ̃4

σ̃2+s̃2o
. Note that a more informative signal leads to a higher

variance on xt. If the consumer gets more information when owning the product than not

owning the product, or s̃o ≤ s̃n, then we have s2 ≥ σ2.

Still another variation could be the case in which the true value x̂ can take only two values,

{−1, 1}, and both search and experience leads to a continuous evolution of the consumer

belief about whether the consumer is facing the good or bad product. Although tractable,

such a model leads to a more complex analysis than the one presented in the main text.

Derivation of x in the Case of x > 0 :

From the differential equation on W(x), and using limx→−∞W (x) = 0, one obtains

W (x) = A1e
µx (10)

where µ =
√

2r/σ2, and A1 is a constant to be determined.2

Using Itô’s Lemma in (2) in the paper one obtains rV (x) = x−λP +V ′′(x) s
2

2
. Note that

limx→∞[V (x) − (x − λP )/r] = 0, as when the current utility goes to infinity, the consumer

is always buying the product when it breaks down, which generates an expected utility of

(x− λP )/r. Using this when solving the differential equation on V (x), one obtains

V (x) = A2e
−µ̃x +

x− λP
r

, (11)

where µ̃ =
√

2r/s2, and A2 is a constant to be determined.

Using Itô’s Lemma on (3) in the paper, and solving the resulting differential equation,

this yields

Ṽ (x) = A3e
µ̂x + A4e

−µ̂x +
x

r + λ
+

λA1

r(1− s2/σ2) + λ
eµx, (12)

where µ̂ =
√

2(r + λ)/s2, and A3 and A4 are constants to be determined.

Similarly, from (4) in the paper, and using the fact that the expected utility when owning

the product goes to zero when the current utility of using the product approaches negative

infinity, one obtains

Ṽ (x) = A5e
µ̂x +

λA1

r(1− s2/σ2) + λ
eµx, (13)

2Note that the general solution of the differential equation rW (x) = W ′′(x)σ
2

2 is W (x) = A1e
µx+Ã1e

−µx,

where A1 and Ã1 are constants. The condition limx→−∞W (x) = 0 then yields Ã1 = 0. Similar derivations
are also used in the remainder of the paper when appropriate.
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where A5 is a constant to be determined.

Value matching and smooth pasting at both x and 0, W (x) = V (x) − P,W ′(x) =

V ′(x), V (x) = Ṽ (x), V ′(x) = Ṽ ′(x), Ṽ (0+) = Ṽ (0−), and Ṽ ′(0+) = Ṽ ′(0−) yields

A1X =
A2

X̃
+
x− λP

r
− P (14)

µA1X = − µ̃A2

X̃
+

1

r
(15)

A5 = A3 + A4 (16)

A5 −
1

µ̂(r + λ)
= A3 − A4 (17)

A2

X̃
+
x− λP

r
= A3X̂ +

A4

X̂
+

x

r + λ
+

λA1X

r(1− s2/σ2) + λ
(18)

− µ̃A2

X̃
+

1

r
= µ̂A3X̂ −

µ̂A4

X̂
+

1

r + λ
+

µλA1X

r(1− s2/σ2) + λ
(19)

where X = eµx, X̃ = eµ̃x, and X̂ = eµ̂x. We can then solve (14)-(19) for A1, A2, A3, A4, A5,

and x.

From (14) and (15) we can obtain

A1X =
µ̃

µ+ µ̃

x− λP
r

− µ̃

µ+ µ̃
P +

1

r(µ+ µ̃)
. (20)

From (16) and (17) we can obtain

A4 =
1

2µ̂(r + λ)
. (21)

Using (14) and (18) we can obtain

A3X̂ = A1X
r(1− s2/σ2)

r(1− s2/σ2) + λ
+ P − A4

X̂
− x

r + λ
. (22)

Using then (15), (20), (21), and (22) in (19) we can then obtain (5) in the paper, which

determines x.

Derivation of x in the Case of x < 0 :

Let W (x) be the expected present value of payoffs for the consumer if the consumer does

not own the product and is getting information on the product, x < x < 0. Let V (x) be the
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expected present value of payoffs for the consumer if the consumer owns the product and

x ≥ x. Let Ṽ (x) be the expected value of payoffs for the consumer if the consumer owns the

product and x < x.

When the consumer does not own the product and is searching for information we can

obtain that the evolution of W (x) is characterized by

W (x) = e−r dtE[W (x+ dx)]. (23)

Using Itô’s Lemma, we can get rW (x) = W ′′(x)σ
2

2
, from which we can obtain

W (x) = D1e
µx + D̃1e

−µx (24)

where µ =
√

2r/σ2 andD1 and D̃1 are constants to be determined. Note that limx→−∞W (x) =

0, so we obtain D̃1 = 0.

When the consumer owns the product and x ≥ 0, we have that the expected present

value of consumer payoffs has to satisfy

V (x) = x dt+ e−r dtλ dt{E[V (x+ dx)]− P}+ e−r dt(1− λ dt)E[V (x+ dx)] (25)

Using Itô’s Lemma, this reduces to rV (x) = x − λP + V ′′(x) s
2

2
. Solving this differential

equation one obtains

V (x) = D̃2e
µ̃x +D2e

−µ̃x +
x− λP

r
, (26)

where µ̃ =
√

2r/s2, andD2 and D̃2 are constants to be determined. Note that limx→∞[V (x)−
(x− λP )/r] = 0. We then have that D̃2 = 0.

Consider now that the consumer owns the product and x ≤ x < 0. In this region, the

consumer would not use the product, but would repurchase if the product breaks down. The

expected present value of consumer payoffs has to satisfy

V (x) = e−r dtλ dt{E[V (x+ dx)]− P}+ e−r dt(1− λ dt)E[V (x+ dx)]. (27)

Using Itô’s Lemma, and solving the resulting differential equation, this yields

V (x) = D3e
µ̃x +D4e

−µ̃x − λ

r
P, (28)

where µ̃ =
√

2r/s2, and D3 and D4 are constants to be determined.
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Finally, for the case of x < x, the expected present value of consumer payoffs has to

satisfy

Ṽ (x) = e−r dtλ dtW (x) + e−r dt(1− λ dt)EṼ (x+ dx) (29)

which yields

Ṽ (x) = D5e
µ̂x + D̃5e

−µ̂x +
λD1

r(1− s2/σ2) + λ
eµx, (30)

where D5 and D̃5 are constants to be determined. Noting that limx→−∞ Ṽ (x) = 0, we obtain

D̃5 = 0.

Value matching and smooth pasting at both x and 0, W (x) = V (x) − P,W ′(x) =

V ′(x), V (x) = Ṽ (x), V ′(x) = Ṽ ′(x), V (0+) = V (0−), and V ′(0+) = V ′(0−) yields

D1X = D3X̃ +
D4

X̃
− λP

r
− P (31)

µD1X = µ̃D3X̃ − µ̃
D4

X̃
(32)

D3X̃ +
D4

X̃
− λP

r
= D5X̂ +

λD1X

r(1− s2/σ2) + λ
(33)

D3X̃ −
D4

X̃
=

µ̂

µ̃
D5X̂ +

µ

µ̃

λD1X

r(1− s2/σ2) + λ
(34)

D3 +D4 = D2 (35)

D3 −D4 = −D2 +
1

rµ̃
(36)

where X = eµx, X̃ = eµ̃x, and X̂ = eµ̂x. We can then solve (31)-(36) for D1, D2, D3, D4, D5,

and x.

From (35) and (36) we can obtain

D3 =
1

2rµ̃
(37)

From (31) and (33) we can obtain

r(1− s2/σ2)

r(1− s2/σ2) + λ
D1X = D5X̂ + P (38)
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Using (32) and (34) we can obtain

r(1− s2/σ2)

r(1− s2/σ2) + λ
D1X =

µ̂

µ
D5X̂ (39)

Combining (38) and (39), we get

D1X = P
µ̂

µ̂− µ
r(1− s2/σ2)

r(1− s2/σ2) + λ
(40)

From (31) and (32) we can obtain

D1X =
1

r(µ+ µ̃
)X − µ̃

µ+ µ̃

λ+ r

r
P (41)

Combining (40) and (41) we get the closed-form solution for x as in (7) in the paper:

eµx = P

[
µ̃(λ+ r) + rµ̂

µ+ µ̃

µ̂− µ
r(1− s2/σ2)

r(1− s2/σ2) + λ

]
(42)

Derivation of the Expected Discount Factor until the Next Purchase:

Using limx→∞ d̃(x) = λ
λ+r

, and Itô’s Lemma in (14) in the paper, and solving the resulting

differential equation, yields

δ̃(x) = B1e
−µ̂x +

λ

λ+ r
(43)

where we recall that µ̂ =
√

2(r + λ)/s2, and B1 is a constant to be determined.

From (15) in the paper we can obtain the differential equation

(r + λ)δ̃(x) = λe−µ(x−x) +
s2

2
δ̃′′(x). (44)

Note that as x→ −∞, the expected discount factor until the next purchase approaches zero.

Using this when solving the differential equation (44) yields

δ̃(x) = B2e
µ̂x +

λ

λ+ r(1− s2/σ2)
e−µ(x−x), (45)

where B2 is a constant to be determined.

Value matching and smooth pasting at x, δ̃(x+) = δ̃(x−) and δ̃′(x+) = δ̃′(x−), yields B1

and B2 below, which fully determines δ̃(x), and therefore T̃ (x).
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B1 =
λeµ̂x

2

[
1− µ/µ̂

λ+ r(1− s2/σ2)
− 1

λ+ r

]
(46)

B2 =
λe−µ̂x

2

[
1

λ+ r
− 1 + µ/µ̂

λ+ r(1− s2/σ2)

]
(47)

Derivation of the Expected Number of Purchases:

Let N(x) be the expected number of units purchased going forward given that the con-

sumer starts at x < x and the consumer does not own the product. We have that N(x)

evolves over time as

N(x) = (1− β dt)EN(x+ dx). (48)

Note that limx→−∞N(x) = 0, as the number of expected purchases going forward approaches

zero, when the current utility of owning/using the product goes to negative infinity. Using

this when solving for (48) yields

N(x) = C1e
ηx (49)

where η =
√

2β/σ2, and C1 ia a constant to be determined.

Let Ñ(x) be the expected number of future units purchased over time given that the

consumer owns the product. As the consumer purchases the product immediately if the

consumer does not own the product and x = x, we have

N(x) = 1 + Ñ(x). (50)

For x ≥ x the evolution of Ñ(x) over time has to satisfy

Ñ(x) = λ dt [1 + Ñ(x)] + (1− λ dt− β dt)EÑ(x+ dx). (51)

Note also that limx→∞ Ñ(x) = λ/β. To see this, we can obtain that the expected duration

of the consumer in the market is 1/β, and the expected duration of the product is 1/λ.

Then, if the consumer always repurchased the product when it broke down, the consumer

would make on “average” λ/β purchases going forward. As the current utiliy of owning the

product approaches infinity, the consumer behaves as if always repurchasing the product

when it breaks down, and therefore the expected number of purchases going forward, Ñ(x)
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approaches λ/β. Using this, when solving for (51), yields

Ñ(x) = C2e
−η̃x +

λ

β
, (52)

where η̃ =
√

2β/s2. and C2 is a constant to be determined.

Consider now the evolution of Ñ(x) for x < x. This yields

Ñ(x) = λ dtN(x) + (1− λ dt− β dt)EÑ(x+ dx). (53)

By Itô’s Lemma, this can be written as

(β + λ)Ñ(x) = λC1e
ηx +

s2

2
Ñ ′′(x). (54)

Note that limx→−∞ Ñ(x) = 0 as when the current utility x of owning the product approaches

negative infinity, the consumer is expected not to make any more purchases going forward.

Using this when solving for (54) yields

Ñ(x) = C3e
η̂x + C1

λ

λ+ β(1− s2/σ2)
eηx, (55)

where η̂ =
√

2(β + λ)/s2, and C3 is a constant to be determined.

The value matching and smooth pasting conditions at x presented in the text yield

C2

Ỹ
+
λ

β
= C3Ŷ + C1Y

λ

λ+ β(1− s2/σ2)
(56)

−η̃C2

Ỹ
= η̂C3Ŷ + ηC1Y

λ

λ+ β(1− s2/σ2)
. (57)

where Y = eηx, Ỹ = eη̃x, and Ŷ = eη̂x. Using (50), (56), and (57) we can obtain C1, C2, and

C3 as a function of x.3

Using (50) in both (56) and (57) we can solve for C2/Ỹ to obtain

C2

Ỹ
=

η̂s2/σ2 − η(λ+ β)/β

η̂ β(1−s
2/σ2)
λ

+ η̃(λ+β(1−s
2/σ2)

λ
) + η

. (58)

3Note that we do not have smooth pasting at x between N(x) and Ñ(x) as there is no optimality decision

on the derivation of these functions. Note also that the smooth pasting condition for Ñ(x) at x is not an
optimality condition, but it is rather due to the infinite variation of the Brownian motion.
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Using (50) we can then obtain (21) in the paper.

Proof of Proposition 3:

The comparative statics for the expected number of purchases going forward immediately

after a purchase can be directly obtained from evaluating (22) in the paper at x,N(x). The

comparative statics for λ and β are straightforward. To get the comparative statics with

respect to the ratio s2/σ2, let ε =
√
s2/σ2 and w =

√
1 + λ/β. Using (21) in the paper we

can obtain

N(x) = w2 +
ε2
√

2(β+λ)
s2
− w2

√
2β
σ2

β(1−ε2)
λ

√
2(β+λ)
s2

+ λ+β(1−ε2)
λ

√
2β
s2

+
√

2β
σ2

. (59)

Multiplying the second term in the right hand side of (59) on the numerator and denominator

by
√

s2

2β
and then by (w − 1), we can then obtain, using (18) in the paper,

Ñ(x) = w2 − 1 +
w(w − 1)(ε2 − wε)

1− ε2 + (w − 1)(1 + ε)
, (60)

where the derivative to ε is negative.

The comparative statics with respect to β, r̃, and P, of the expected number of purchases

going forward after an initial current utility of x < x can be directly obtained by differen-

tiating (22) in the paper. The comparative statics with respect to s2 = σ2 and λ require a

little more analysis.

Consider first the comparative statics with respect to s2 = σ2. We can obtain:

∂N(x)

∂σ2 σ2=s2
=

[
∂η

∂σ2
(x− x)− η ∂x

∂σ2 σ2=s2

]
N(x). (61)

As both ∂η
∂σ2 (x− x) and η ∂x

∂σ2 σ2=s2
are positive, we can see that the size of |x− x| determines

the sign of ∂N(x)
∂σ2 σ2=s2

, which is positive (negative) is X is low (high) enough.

Consider now the comparative statics with respect to λ. We can obtain

∂N(x)

∂λ
=

1

2
eη(x−x)

[
1

β

(
1 +

1

2

√
β

λ+ β

)
− η∂x

∂λ

]
, (62)

which is negative if β is not too low.

Derivation of G(x) and G̃(x):
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We have that G(x) evolves over time as

G(x) = e−r dtEG(x+ dx), (63)

which yields

G(x) = C1e
µx + C2e

−µx (64)

where C1 and C2 are constants to be determined. As limx→−∞G(x) = 0, we have C2 = 0.

Let G̃(x) be the discounted number of future units purchased over time given that the

consumer owns the product. As the consumer purchases the product immediately if the

consumer does not own the product and x = x, we have

G(x) = 1 + G̃(x). (65)

For x ≥ x the evolution of G̃(x) over time has to satisfy

G̃(x) = λ dt [1 + G̃(x)] + (1− λ dt)e−r dtEG̃(x+ dx), (66)

which yields

G̃(x) = C3e
µ̃x + C4e

−µ̃x +
λ

r
, (67)

where C3 and C4 are constants to be determined. As limx→∞ G̃(x) = λ/r, we have C3 = 0.

Consider now the evolution of G̃(x) for x < x. This yields

G̃(x) = λ dtG(x) + (1− λ dt)e−r dtEG̃(x+ dx). (68)

By Itô’s Lemma, this can be written as

(r + λ)G̃(x) = λC1e
µx +

s2

2
G̃′′(x), (69)

which yields

G̃(x) = C5e
µ̂x + C6e

−µ̂x + C1
λ

λ+ r(1− s2/σ2)
eµx, (70)

where C5 and C6 are constants to be determined. As limx→−∞ G̃(x) = 0, we have C6 = 0.

Using value matching and smooth pasting at x for G̃(x), G̃(x+) = G̃(x−) and G̃′(x+) =
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G̃′(x−), yields

C4

X̃
+
λ

r
= C5X̂ + C1X

λ

λ+ r(1− s2/σ2)
(71)

−µ̃C4

X̃
= µ̂C5X̂ + µC1X

λ

λ+ r(1− s2/σ2)
. (72)

Using (65), (71), and (72) we can obtain C1, C4, and C5 as a function of x.4

Using (65) in both (71) and (72) we can solve for C4/X̃ to obtain

C4

X̃
=

µ̂s2/σ2 − µ(λ+ r)/r

µ̂ r(1−s
2/σ2)
λ

+ µ̃(λ+r(1−s
2/σ2)

λ
) + µ

. (73)

Using (65) we can then obtain (23) in the paper.

Proof of Proposition 4:

Given the presentation in the text, we have the characterization of the equilibrium as

a function of x0. To see that x is increasing in x0 for x0 > x∗∗ we can see that the right

hand side of (31) in the paper is decreasing in x and increasing in x0. To see that x < x0 for

x0 > x∗∗ we can just obtain that the total differentiation of (31) in the paper with respect

to x0 and x yields ∂x
∂x0

< 1.

For the comparative statics with respect to λ, r, and σ2 (under the constraint s2 = σ2)

let us consider each region of x0 separately.

For x0 < x∗, note that we can write (27) in the paper as

x− X̂ − 1

X̂

(
1

µ̂
+

1

µ

)
= 0. (74)

The derivative of the left hand side with respect to x can be obtained to be 1− a/(ea − 1),

after using (27) in the paper, where a = µ̂x. We can then obtain that that derivative is

positive for a > 0. Taking the derivative of the left hand side of (74) with respect to µ̂ we

can obtain that it has the same sign of (ea − 1)2 − a2ea, which is positive for a > 0. Then,

as µ̂ is increasing in λ we can obtain ∂x
∂λ
< 0.

4Note that we do not have smooth pasting at x between G(x) and G̃(x) as there is no optimality decision

on the derivation of these functions. Similarly to the case of Ñ(x) above, note also that the smooth pasting

condition for G̃(x) at x is not an optimality condition, but it is rather due to the infinite variation of the
Brownian motion.
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The derivative of the left hand side of (74) with respect to r is equal to the derivative

with respect to λ, which we saw was positive, plus X̂−1
X̂

1
µ2

∂µ
∂r
> 0, which then yields ∂x

∂r
< 0.

The derivative of the left hand side of (74) with respect to σ2 under the constraint σ2 = s2

is composed with two terms, one though µ̂ and the other through µ, where both are negative

(the first one has the opposite sign of the derivative with respect to λ and the second is
X̂−1
X̂

1
µ2

∂µ
∂σ2 < 0). This then yields ∂x

∂σ2 |s2=σ2 > 0.

For the case when s2 6= σ2 we can obtain from equation (5) in the paper

∂x

∂P
= X̂(r + λ)

1− A
X̂ − 1− AX̂

, (75)

where A = µ̃
µ̂
µ−µ̂
µ+µ̃

(r+λ)(s2/σ2−1)
λ−r(s2/σ2−1) , and we can then obtain the optimal price using (24) in the

paper as

P =
1

µ(λ+ r)X̂

X̂ − 1− AX̂
1− A

. (76)

As in the case of s2 = σ2 we can then obtain the equivalent to (74) by using (76) in (5) in

the paper:

x− X̂ − 1

X̂

(
1

µ̂
+

1

µ

)
− A

(
x− 1

µ
+

1

µ̃

)
= 0, (77)

Denoting the first two terms of (77) as φ12(s
2) we have

∂φ12

∂s2
= −X̂ − 1− µ̂x(1 + µ̂/µ)

2s2µ̂X̂
, (78)

as the derivative of the first two terms with respect to µ̂ is X̂−1−µ̂x(1+µ̂/µ)
µ̂2X̂

, and the derivative

of µ̂ with respect to s2 is − µ̂
2s2
. Denoting the third term of (77) as φ3(s

2) we can obtain

∂φ3

∂s2
=
µ̃(µ̂− µ)(r + λ)x

σ2λµ̂(µ+ µ̃)
, (79)

when it is evaluated at s2 = σ2, given that s2/σ2 − 1 = 0 when s2 = σ2.

When s2 = σ2 we have from the above analysis of (74) that the left hand side of (77) is
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increasing in x. Adding ∂φ12
∂s2

and ∂φ3
∂s2
, and using (27) in the paper, we can obtain

Sign

{
∂x

∂s2

}
= Sign

{
X̂ − 1− µ̂x(1 + µ̂/µ)

2X̂
− µ̃(µ̂− µ)(r + λ)x

λ(µ+ µ̃)

}

= Sign

{
λ(X̂ − 1)− λµ̂x

(
1 +

√
r + λ

r

)
− (r + λ)

(
1 +

√
r + λ

r

)(
1−

√
r

r + λ

)
(X̂ − 1)

}
(80)

when evaluated at s2 = σ2, which is negative as (r+λ)(1+
√

(r + λ)/r)(1−
√
r/(r + λ)) > λ.

To check the effect on P we can use (74) in (6) in the paper to obtain

P = x

(
1

λ+ r +
√
r(λ+ r)

)
. (81)

when s2 = σ2. Given the results on the comparative statics on x we can then immediately

obtain ∂P
∂λ
, ∂P
∂r
< 0, and ∂P

∂σ2 |s2=σ2 > 0.

For the case in which s2 6= σ2, we can similarly use (77) in (5) in the paper to obtain

P = x

(
1

λ+ r +
√
r(λ+ r)

)
− A(1 + µ̂/µ̃)

(r + λ)(1− A)(µ+ µ̂)
(82)

As we have

∂x

∂s2
=
λ[ea − 1− a(1 + γ)]− (γ − 1/γ)(r + λ)(ea − 1)

2λs2µ̂X̂

ea − 1

ea − 1− a
(83)

where a = µ̂x, γ = µ̂/µ, when evaluated at s2 = σ2, we can obtain

∂P

∂s2
=

∂x

∂s2
µ̂

(r + λ)(µ+ µ̂)
+

1− µ/µ̂
2λµσ2

(84)

from which we can obtain, using (27) in the paper

Sign

{
∂P

∂s2

}
= Sign{ea − 1− a− a2}. (85)

As we have that a is increasing in λ/r and ea−1−a−a2 < 0 for λ = 0 and ea−1−a−a2 > 0

14



for λ/r → ∞, we then have that ∂P
∂s2

< 0 for λ/r sufficiently small, and ∂P
∂s2

> 0 for λ/r

sufficiently large.

To obtain the equivalent to (31) in the paper, the equation h(x, x0) = 0, for when s2 6= σ2,

we can use (5) in the paper in (30) in the paper to yield

1 + G̃(x0) + µ̃X̂[G̃(x0)−
λ

r
]

1− A
X̂ − 1− AX̂

[
x+

1− X̂
µ̂X̂

− (x+ 1/µ̃)

]
= 0. (86)

As in the case of s2 = σ2, when s2 6= σ2 we can obtain x∗∗ by h(x∗∗, x∗∗) = 0.

For x0 ∈ [x∗, x∗∗], we can just use the derivation in Proposition 1 as the purchase threshold

is fixed at x0, and we can just compute the effect of λ, r, s2 and σ2, under the constraint

of s2 = σ2, by just total differentiating (5) in the paper with respect to P and each of the

variables under interest. We can then obtain that the optimal price is decreasing in λ, r, and

σ2, under the constraint of s2 = σ2, and increasing in s2.

Consider now the case of x0 > x∗∗. Consider first the effect of λ. We can obtain that the

derivative of the right hand side of (31) in the paper, using also that expression, has the sign

equal to the sign of 1− C1/2− C2/2 where

C1 =

√
1 +

λ

r

/(√
1 +

λ

r
− 1

)
, (87)

C2 =

aea

ea−1

(
1− a

ea−1

)
+
√

1 + λ
r

aea

ea−1 − 1 +
√

1 + λ
r

. (88)

We can then obtain that C1, C2 > 1, so that this derivative is negative, which implies that x

is decreasing in λ given that the left hand side of (31) in the paper is decreasing in x. From

(6) in the paper we can then obtain that P is also decreasing in λ given Proposition 1.

Consider now the effect of r. The derivative of the left hand side of (31) in the paper

with respect to r can be obtained to be

− λ

r2
+

λ

2r2

√
1 + λ

r√
1 + λ

r
− 1
− 1

2r

aea

ea−1

(
1− a

ea−1

)
− λ

r

√
1 + λ

r

aea

ea−1 − 1 +
√

1 + λ
r

+

(
1 +

λ

r

)
(x0 − x)

1√
2rs2

(89)

which can be either negative or positive. For example, it can be negative for x0 = x∗∗ and

λ large; it can be positive for λ small and x0 large. Then, x can either increase or decrease
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with an increase in r.

Consider now the effect of σ2, under the constraint s2 = σ2. The sign of the derivative of

the left hand side of (31) in the paper can be obtained to be the same as the sign of

− aea

ea − 1

(
1− a

ea − 1

)
eµ̃(x−x0) + 2x̃(x0 − x)

1 + λ
r√

1 + λ
r
− 1

, (90)

which can be either positive or negative. For example, it can be positive if x0 is sufficiently

large; and it can be negative if x0 = x∗∗.

Finally, consider the effect of s2 on x while keeping σ2 fixed for x0 > x∗∗. The sign of the

derivative of the left hand side of (86) with respect to s2 can be obtained to be the same as

the sign of

(
1−

√
r + λ

r

)
X̂

[
− µ̃x− µ̃x

(
µ̃x−

√
r

r + λ

)
− (µ̃x+ 1)

(√ r

r + λ
− 1
)r + λ

λ

]
+[

µ̃xX̂+

√
r

r + λ
(1−X̂)

][
−
(

3+

√
λ+ r

r

)
/2−µ̃

(
1−
√
λ+ r

r

)
(x−x0)−

(
1−
√

r

r + λ

)2 r + λ

λ

]
(91)

when evaluated at s2 = σ2, which can be either positive or negative depending on the values

of x0 and λ.

Derivation of the Analysis Related to Proposition 5 When s2 6= σ2:

The optimal price is determined by (76), and the discounted number of purchases is given

by (23) in the paper. Then, the firm’s expected profit Π(x0) = PG(x0) is

Π(x0) =
D

µ(λ+ r)X̂

X̂ − 1− ÃX̂
1− Ã

eµ(x0−x), (92)

where

Ã = −s
2/σ2 − 1

s2/σ2 + 1

√
r+λ
r√

r+λ
r

+
√
s2/σ2

D =

√
r+λ
r

( r+λ
r
− s2/σ2)(1 +

√
r+λ
r

)

(1 +
√
s2/σ2)( r+λ

r
− 1) + (1− s2/σ2)(1 +

√
r+λ
r

)
. (93)
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Given the analysis in the main text, we know that for s2 close to σ2 that the firm’s

expected profit increases in λ.

What happens at the limit of λ → ∞? From (77) we get that x → 2
µ
− 1

µ̃
as λ → ∞.

Then from (76) we get P → 1
µ

as λ→∞. Thus at the limit, the expected profit becomes

Π(x0) =
eµx0−2+µ/µ̃

rµ(1 +
√
s2/σ2)

(94)

Sketch of the Proof That Expected Time until the Next Purchase Is Infin-

ity: This is related to the Gambler’s Ruin problem. Consider a discrete random walk in

the set of natural numbers, going up +1 or −1 with equal probability. What is the expected

time to reach zero given that the process starts at 1? Let T (n) be the expected time for the

process to reach zero when starting at n. We have

T (1) =
1

2
+

1

2
T (2). (95)

Given spatial homogeneity, we know that expected time to go to 1 starting from 2 is T (1),

and therefore T (2) = 2T (1). Substituting in (95) we obtain T (1) = 1
2

+ T (1) which is only

true for T (1) =∞.

In the continuous case considered here, let T (x) be the expected time until the first

purchase for x < x. If T (x) is bounded we can obtain T (x) = dt+ ET (x+ dx) which leads

to the second order differential equation T
′′
(x) = −2/σ2. This then leads to limx→−∞ T (x) =

−∞, which is not possible. Then, T (x) is not bounded for x < x.

Derivation of Case with Returns at the Purchase Price P: When returns are

always possible at the purchase price P, then the consumer’s purchase threshold and return

threshold are the same. The consumer buys the product if the expected current valuation x

reaches x, and returns the product when x dips below x. Use the value function for x < x

from (x), W (x), the value function for x > x from (xi), V (x), and the boundary conditions

W (x) = V (x)− P and W ′(x) = V ′(x), we get

W (x) =
1

1 + µ/µ̃

(
x− λP

r
+

1

µr
− P

)
e−µxeµx (96)

V (x) =
1

1 + µ̃/µ

(
−x− λP

r
+

1

µr
+ P

)
eµxeµx (97)
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From which we see that W (x) and V (x) are maximized at x = (r + λ)P + 1/µ− 1/µ̃.

To derive the optimal price and product duration for the case of s2 = σ2 we can obtain

the present value of profits when the consumer does not own the product as Π(x0) as follows.

For x < x we have

Π(x) = e−r dtEΠ(x+ dx), (98)

which leads to Π(x) = F1e
µx, given that limx→−∞Π(x) = 0, where F1 is a constant to be

determined.

For x > x we have the present value of value of profits going forward when the consumer

owns the product as

Π̃(x) = Pλ dt+ e−r dtEΠ̃(x+ dx), (99)

which leads to π̃(x) = F2e
−µ̃x+λP/r, given that limx→∞ Π̃(x) = λP/r, where F2 is a constant

to be determined. The value matching and smooth pasting conditions, Π(x) + P = Π̃(x)

and Π′(x) = Π̃′(x), leads to

F1 =
µ̃

µ+ µ̃
P (λ/r − 1)e−µ(r+λ)P (100)

F2 = − µ

µ+ µ̃
P (λ/r − 1)em̃u(r+λ)P . (101)

We can then obtain Π(x) = µ̃
µ+µ̃

P (λ/r−1)eµ[x−(r+λ)P ], from which we can obtain P = 1
µ(r+λ)

and that an infinitely small product duration is optimal. At the limit, the problem converges

to the case without product returns, as an infinitely short duration makes return irrelevant.

Derivation of Dynamic Pricing:

Let us look for two prices, an initial price before the first purchase, P0, and subsequent

price after the first purchase, P1. We denote the threshold for the first purchase with P0 as

x0, and denote the threshold for the subsequent purchases with P1 as x1. We consider the

case with s2 = σ2 so that x0 > 0 and x1 > 0.

There are two possibilities at time 0. If the consumer does not buy at time 0, then we

must have x0 > x0. If the consumer buys at time 0, then x0 ≤ x0. However, if x0 < x0,

then we must still have x0 < x0 for a marginal increase in P0, which strictly increases the

firm’s profit as the consumer immediately buys under a slightly higher initial price, with the

same expected profit after the initial purchase. Thus under optimal pricing, we must have

x0 ≥ x0.
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From equation (6), we can write the subsequent price, P1, as a function of x1:

P1 =
µ̂x1 + e−µ̂x1 − 1

µ̂(r + λ)
. (102)

After the first purchase, the value functions presented in the paper continue to hold. So,

we can focus the value function under dynamic pricing for the consumer before the first

purchase, W̃ (x).

The Bellman equation for W̃ (x) is

W̃ (x) = e−r dtEW̃ (x+ dx), (103)

which leads to the solution,

W̃ (x) = Ã1e
µx. (104)

Consider the problem of the firm. Because under optimal pricing we must have x0 ≥ x0,

the expected profit for the firm at time 0, using the expected time until next purchase, δ(x0),

can be written as

max
P0,P1

e−µ(x0−x0)[P0 + P1G̃(x0)]. (105)

We already have P1 as a function of x1. We can express P0 and G̃(x0) as functions of x0 and

x1, then have firm maximize over x0 and x1:

max
x0≥x0,x1

e−µ(x0−x0)[P0 + P1G̃(x0)]. (106)

Case 1: x0 ≥ x1

Now we solve for P0 as a function of x0 and x1. The value matching and smooth pasting

conditions at x0 are

W̃ (x0) = V (x0)− P0 (107)

W̃ ′(x0) = V ′(x0). (108)

These conditions can be written as

Ã1e
µx0 = A2e

−µ̃x0 +
x0 − λP1

r
− P0 (109)

Ã1e
µx0 = − µ̃

µ
A2e

−µ̃x0 +
1

rµ
, (110)
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from which we can obtain

P0 = 2A2e
−µ̃x0 +

x0 − λP1

r
− 1

rµ
. (111)

Note also that we can obtain A2 as a function of x1 using (xx), and (xiv).

For x0 ≥ x1, from (lxx) we have

G̃(x0) = C4e
−µ̃x0 +

λ

r
(112)

where C4 is a function of x1 using (lxv), (lxxi), and (lxxii).

Case 2: x0 < x1

Now we solve for P0 as a function of x0 and x1. The value matching and smooth pasting

conditions at x0 are

W̃ (x0) = Ṽ (x0)− P0 (113)

W̃ ′(x0) = Ṽ ′(x0). (114)

These conditions can be written as

Ã1e
µx0 = A3e

µ̂x0 + A4e
−µ̂x0 +

x0
r + λ

+ A1e
µx0 − P0 (115)

Ã1e
µx0 =

µ̂

µ
A3e

µ̂x0 − µ̂

µ
A4e

−µ̂x0 +
1

µ(r + λ)
+ A1e

µx0 (116)

from which we can obtain

P0 = (1− µ̂

µ
)A3e

µ̂x0 + (1 +
µ̂

µ
)A4e

−µ̂x0 +
x0 − 1/µ

r + λ
(117)

where A3 and A4 are functions of x1 using (xx), (xxi), and (xxii).

For x0 < x1, from (lxx) we have

G̃(x0) = C5e
µ̂x0 + C1e

µx0 (118)

where C1 and C5 are functions of x1 using (lxv), (lxxi), and (lxxii).

20



For the constants, we have

C4 = X̃1
µ̂− µ(λ+ r)/r

µ̃+ µ
(119)

C1 =
(1 + µ̃/µ̂)C4/X̃1 + λ/r

(1− µ/µ̂)X1

(120)

C5 =
1

X̂1

(
C4

X̃1

+
λ

r
− C1X1

)
(121)

A1 =
1

X1

(
1

2

x1 − λP1

r
− 1

2
P1 +

1

2rµ

)
(122)

A2 = X̃1

(
A1X1 −

x1 − λP1

r
+ P1

)
(123)

A4 =
1

2µ̂(r + λ)
(124)

A3 =
1

X̂1

(
P − A4

X̂1

− x1
r + λ

)
(125)

where X1 = eµx1 , X̃1 = eµ̃x1 , and X̂1 = eµ̂x1 .
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